Electric Cable

Installation Manual

Series 386 & 387

If you have any questions, please call 1-800-608-0562
www.infloor.com

⚠️ WARNING
Please be aware local codes may require this product and/or the thermostatic control to be installed or connected by an electrician.
Read this Manual BEFORE using this equipment.
Failure to read and follow all safety and use information can result in death, serious personal injury, property damage, or damage to the equipment.
Keep this Manual for future reference.

Infloor Electric Cable is a simple, economical way to warm any floor, and provide years of lasting comfort. This instruction manual provides complete details, suggestions, and safety precautions for installing this floor-warming system. Fasten the cables to the floor. Then, depending on the floor coverings to be used, put down a layer of thin-set, thick-set, or self-leveling mortar on top of the cables. Finally, install the floor coverings. It's that simple!

Specifications for Infloor Electric Cable:
Infloor Electric Cable is a complete heating cable consisting of a series resistance heating cable and a power lead for connection to the electric power supply. The heating cable cannot be cut to fit.

**Voltages:** 120 VAC, 240 VAC, 1-phase

**Watts:**
- 3 W/linear foot. Approximately 10.3 W/ft² (34 Btu/h/ft²) for 3.5" spacing,
- 12 W/ft² (41 Btu/h/ft²) for 3" spacing,
- 14.4 W/ft² (51 Btu/h/ft²) for 2.5" spacing.

(See Table 2)

2.5" spacing may only be used under masonry surfaces with a maximum floor covering R-value of R-1.5 as indicated in this manual. 3" or 3.5" spacing may be used under floor covering types with a maximum R-value of R-2.5.

**Maximum circuit load:** 15 amps

**Maximum circuit overload protection:** 20 amp breaker

**GFCI:** (Ground Fault Circuit Interrupter) required for each circuit (included in the Infloor control)

**Listing:** UL Listed for U.S. and Canada under UL 1673 and CAN/CSA C22.2 No. 130.2-93, File No. E185866

**Application:** Indoor floor heating only (-X on the nameplate label indicates CUL Listing for this application). Suitable for installation in a shower area (see pg 18 for restrictions) (-W on the nameplate label indicates CUL Listing for Wet Location in Canada per Canadian Electrical Code, Part I (CEC)).

- Embedded in cement based mortar only, polymer-modified preferred (see Appendix 1).

**Minimum bend radius:** 1 inch

**Maximum exposure temperature:**
- (continuous and storage) 194°F (90°C)

**Minimum installation temperature:** 50°F (10°C)

**WARNING**
Installation must be performed by qualified persons, in accordance with local codes, ANSI/NFPA 70 (NEC Article 424) and CEC Part 1 Section 62 where applicable. Prior to installation, please consult the local codes in order to understand what is acceptable. To the extent this information is not consistent with local codes, the local codes should be followed. However, electrical wiring is required from a circuit breaker or other electrical circuit to the control. It is recommended that an electrician perform these installation steps. Please be aware local codes may require this product and/or the control to be installed by an electrician.
**Expected floor temperature**

Heating performance is never guaranteed. The floor temperature attainable is dependent on how well the floor is insulated, the temperature of the floor before start up, and the overall thermal drain of the floor mass. Insulation is required for best performance. Refer to Phase 9 for important design considerations.

**These are the three most common installations:**

1. **Wood framing:** With the cable installed on a well-insulated wood subfloor, and thin-set mortar and tile on top, most floors can be heated up to 20°F warmer than they would otherwise be.

2. **Insulated concrete slab:** With the cables installed on an insulated concrete slab, and thin-set mortar and tile on top, most floors can be heated up to perhaps 15°F warmer than they would otherwise be.

3. **Uninsulated concrete slab:** With the cables installed on an uninsulated concrete slab, and thin-set mortar and tile on top, most floors can be heated up to perhaps 10°–15°F warmer than they would otherwise be.

Please consult a designer or the factory if questions remain about the surface temperature that can be expected from the cables in any particular construction. Please see “Phase 10: Install Insulation” on page 22.

---

**Table of Contents**

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preparations</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Electrical Rough-in</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>HeatMatrix Cable Install</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Wire Strap / Cable Install</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Shower Area Installation</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Final Steps</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>Finish Wiring</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Control Installation</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>Install the Floor Coverings</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>Install Insulation</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Appendices</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Troubleshooting</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Warranty</td>
<td>35</td>
</tr>
</tbody>
</table>

**Important Safety Information**

This is a safety-alert symbol. The safety alert symbol is shown alone or used with a signal word (DANGER, WARNING, or CAUTION), a pictorial and/or a safety message to identify hazards.

When you see this symbol alone or with a signal word on your equipment or in this Manual, be alert to the potential for death or serious personal injury.

This pictorial alerts you to electricity, electrocution, and shock hazards.

**WARNING**

This symbol identifies hazards which, if not avoided, could result in death or serious injury.

**CAUTION**

This symbol identifies hazards which, if not avoided, could result in minor or moderate injury.

**NOTICE**

This symbol identifies practices, actions, or failure to act which could result in property damage or damage to the equipment.
Table 1

⚠️ WARNING

As with any electrical product, care should be taken to guard against the potential risk of fire, electric shock, and injury to persons. The following cautions must be observed:

NEVER install Infloor Electric Cable under carpet, wood, vinyl, or other non-masonry flooring without embedding it in thin-set, thick-set, or self-leveling mortar.

NEVER install Infloor Electric Cable in adhesives or glues intended for vinyl tile or other laminate flooring, or in pre-mix mortars. It must be embedded in cement based mortar.

NEVER cut the heating wire. Doing so will cause dangerous overheating and will void the warranty. The power lead may be cut shorter if necessary, but never remove completely from the heating wire.

NEVER bang a trowel or other tool on the heating wire. Be careful not to nick, cut, or pinch the wire causing it to be damaged.

NEVER use nails, staples, or similar to fasten the heating wire to the floor.

NEVER attempt to repair a damaged heating wire, splice, or power lead using unauthorized parts. Use only factory authorized repair parts and methods.

NEVER splice one heating wire to another heating wire to make it longer. Multiple Infloor Electric Cable power leads must be connected in parallel in a junction box or to the thermostat.

NEVER install one wire on top of another or overlap the heating wire on itself. This will cause dangerous overheating.

NEVER forget to install the floor sensor included with the thermostat.

NEVER install Infloor Electric Cable in any walls, or over walls or partitions that extend to the ceiling.

NEVER install wires under cabinets or other built-ins having no floor clearance, or in small closets. Excessive heat will build up in these confined spaces, and the wire can be damaged by fasteners (nails, screws, etc.) used to install built-ins.

NEVER remove the nameplate label from the power leads. Make sure it is viewable for inspection later.

NEVER allow a power lead or sensor wire to cross over or under a heating cable. Damage could result.

NEVER put the system into full operation until the tile or flooring installer verifies all cement materials are fully cured (typically two to four weeks).

NEVER energize Infloor Electric Cable while it is on the spool. Damage will result.

ALWAYS completely embed the heating wire and factory splices in the floor mortar.

ALWAYS maintain a minimum of 2" spacing between heating wires.

ALWAYS pay close attention to voltage and amperage requirements of the breaker, the thermostat, and the Infloor Electric Cable. For instance, do not supply 240 VAC power to 120 VAC Infloor Electric Cable as damage will result.
Installation must be performed by qualified personnel, in accordance with local codes and standards. A licensed electrician is recommended.

**WARNING**

Installation must be performed by qualified personnel, in accordance with local codes and standards. A licensed electrician is recommended.

**Phase 1 - Preparations**

Before installing Infloor Electric Cable, make sure to fully inspect the products and carefully plan the site. All electrical components selected must be certified for use in your location.

**Items Needed**

**Materials:**
- Infloor Electric Cable system
- Wire Strap or HeatMatrix™ crack-isolation membrane (purchased separately or as part of a kit from Infloor).
- Infloor Thermostat with floor sensor (Infloor thermostats are UL Listed)
- Infloor Relay control if required (Infloor relays are UL Listed)
- Control electrical box (UL Listed, extra deep, see control instructions for size and type Infloor Sensor Tube p/n 29011 required)
- Junction electrical box (if required, must be UL Listed and proper size)
- Wire nuts (if required, must be UL Listed and proper size)
- Flexible or rigid conduit (if required, see Step 2.4, must be UL Listed and proper size)
- 12-guage or 14-guage electrical wiring cable (UL Listed, see Step 2.1)
- Nail plate

**Tools:**
- Digital multi-meter (for ohms testing; must read up to 20,000 ohms (Ω) to measure sensor)
- Drill with 1/2" and 3/4" bits
- Hammer and chisel
- Hot glue gun and hot glue (craft grade)
- Wire strippers
- Phillips screwdriver
- Fish tape
- Hole saw
- Floor covering installation tools

Floor sensor is included in the thermostat packaging. This must be installed in the floor with the cable.
### Table 2 - Cable sizes (all Models with suffix WB & WR)

Please check the product label for exact ratings. This table is for reference only.

The coverage areas below are for Wire Strap or HeatMatrix installation. Contact the factory if using alternate attachment materials that may require different wire spacing. The area coverages shown are approximate and may vary due to installation pattern variations. Also, the heating cable is designed to operate 3 W/linear foot. Values for heat output per square foot may vary depending on installation variations.

**120 VAC**

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Total Sq. ft. 2.5&quot; Spacing 14.4 watts/ft²</th>
<th>Total Sq. ft. 3&quot; Spacing 12 watts/ft²</th>
<th>Total Sq. ft. 3.5&quot; Spacing 10.3 watts/ft²</th>
<th>Wire Length (ft.)</th>
<th>Amp Draw</th>
<th>Resistance (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38630</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>39</td>
<td>1.0</td>
<td>108 - 134</td>
</tr>
<tr>
<td>38631</td>
<td>13</td>
<td>15</td>
<td>18</td>
<td>59</td>
<td>1.5</td>
<td>72 - 89</td>
</tr>
<tr>
<td>38632</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>78</td>
<td>2.0</td>
<td>53 - 66</td>
</tr>
<tr>
<td>38633</td>
<td>21</td>
<td>25</td>
<td>30</td>
<td>98</td>
<td>2.5</td>
<td>42 - 52</td>
</tr>
<tr>
<td>38634</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>117</td>
<td>3.0</td>
<td>33 - 42</td>
</tr>
<tr>
<td>38635</td>
<td>29</td>
<td>35</td>
<td>42</td>
<td>137</td>
<td>3.5</td>
<td>29 - 37</td>
</tr>
<tr>
<td>38636</td>
<td>34</td>
<td>40</td>
<td>48</td>
<td>157</td>
<td>4.0</td>
<td>25 - 32</td>
</tr>
<tr>
<td>38637</td>
<td>38</td>
<td>45</td>
<td>54</td>
<td>176</td>
<td>4.5</td>
<td>22 - 28</td>
</tr>
<tr>
<td>38638</td>
<td>42</td>
<td>50</td>
<td>60</td>
<td>196</td>
<td>5.0</td>
<td>20 - 26</td>
</tr>
<tr>
<td>38639</td>
<td>51</td>
<td>60</td>
<td>72</td>
<td>235</td>
<td>6.0</td>
<td>16 - 21</td>
</tr>
<tr>
<td>38640</td>
<td>59</td>
<td>70</td>
<td>84</td>
<td>274</td>
<td>7.0</td>
<td>14 - 19</td>
</tr>
<tr>
<td>38641</td>
<td>67</td>
<td>80</td>
<td>96</td>
<td>313</td>
<td>8.0</td>
<td>12 - 16</td>
</tr>
<tr>
<td>38642</td>
<td>76</td>
<td>90</td>
<td>108</td>
<td>352</td>
<td>9.0</td>
<td>11 - 14</td>
</tr>
<tr>
<td>38643</td>
<td>84</td>
<td>100</td>
<td>120</td>
<td>391</td>
<td>10.0</td>
<td>10 - 13</td>
</tr>
</tbody>
</table>

**240 VAC**

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Total Sq. ft. 2.5&quot; Spacing 14.4 watts/ft²</th>
<th>Total Sq. ft. 3&quot; Spacing 12 watts/ft²</th>
<th>Total Sq. ft. 3.5&quot; Spacing 10.3 watts/ft²</th>
<th>Wire Length (ft.)</th>
<th>Amp Draw</th>
<th>Resistance (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38730</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>78</td>
<td>1.0</td>
<td>217 - 267</td>
</tr>
<tr>
<td>38731</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>117</td>
<td>1.5</td>
<td>143 - 176</td>
</tr>
<tr>
<td>38732</td>
<td>34</td>
<td>40</td>
<td>48</td>
<td>157</td>
<td>2.0</td>
<td>107 - 132</td>
</tr>
<tr>
<td>38733</td>
<td>42</td>
<td>50</td>
<td>60</td>
<td>196</td>
<td>2.5</td>
<td>84 - 104</td>
</tr>
<tr>
<td>38734</td>
<td>51</td>
<td>60</td>
<td>72</td>
<td>235</td>
<td>3.0</td>
<td>67 - 83</td>
</tr>
<tr>
<td>38735</td>
<td>59</td>
<td>70</td>
<td>84</td>
<td>274</td>
<td>3.5</td>
<td>59 - 73</td>
</tr>
<tr>
<td>38736</td>
<td>67</td>
<td>80</td>
<td>96</td>
<td>313</td>
<td>4.0</td>
<td>50 - 63</td>
</tr>
<tr>
<td>38737</td>
<td>76</td>
<td>90</td>
<td>108</td>
<td>352</td>
<td>4.5</td>
<td>45 - 56</td>
</tr>
<tr>
<td>38738</td>
<td>84</td>
<td>100</td>
<td>120</td>
<td>391</td>
<td>5.0</td>
<td>40 - 50</td>
</tr>
<tr>
<td>38739</td>
<td>101</td>
<td>120</td>
<td>144</td>
<td>470</td>
<td>6.0</td>
<td>33 - 42</td>
</tr>
<tr>
<td>38740</td>
<td>118</td>
<td>140</td>
<td>168</td>
<td>548</td>
<td>7.0</td>
<td>29 - 37</td>
</tr>
<tr>
<td>38741</td>
<td>135</td>
<td>160</td>
<td>192</td>
<td>626</td>
<td>8.0</td>
<td>24 - 31</td>
</tr>
<tr>
<td>38742</td>
<td>151</td>
<td>180</td>
<td>216</td>
<td>704</td>
<td>9.0</td>
<td>22 - 28</td>
</tr>
<tr>
<td>38743</td>
<td>168</td>
<td>200</td>
<td>240</td>
<td>783</td>
<td>10.0</td>
<td>20 - 26</td>
</tr>
</tbody>
</table>

**NOTICE**

It is important to select the proper size cable for the given area. Infloor Electric Cable cannot be cut shorter in order to fit a given area. Doing so will damage the heating wire and prevent the system from working.
STEP 1.1
Remove the Infloor Electric Cable, Infloor thermostat, and Infloor sensor from their packages. Inspect them for any visible damage. Verify everything is the correct size and type according to the plan and the order. Do not attempt to install a damaged product.

STEP 1.2
Record the product information. There is a factory-applied nameplate label on the power leads. Do not remove this label. Record the cable serial number, model number, voltage, and cable resistance range in the Cable and Sensor Resistance Log (Table 4). If installing more than one cable, do this for each of them.

STEP 1.3
Use a digital multi-meter set to the 200Ω or 2000Ω (2kΩ) range to measure the resistance between the conductors of the cable power leads. Record these resistances in Table 4 under “Out of the box before installation”. The resistance should measure within the resistance range on the nameplate label. If it is a little high or low, it may be due to air temperatures or meter calibration. Consult the factory if in doubt.

Measure the resistance between either of the white or black leads and ground lead. This measurement should be “open”, usually indicated by an “OL” or a “I”. This is the same as displayed when the test leads are not touching anything.

If there is any change in the reading, record this information and contact the factory before continuing. This could indicate damage, test lead problems, or a number of other issues. Try “pinning” the test leads to the cable lead wires against a hard non-metal surface if the readings continue to fluctuate.

Change the meter to the 20,000 ohms (20 kΩ) range. Measure between the lead wires of the Infloor thermostat sensor. This resistance varies according to the temperature sensed. Table 3 provides approximate resistance-to-temperature values for reference.

Table 3 - Floor Sensor Resistance Values

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>55°F (13°C)</td>
<td>17,000 ohms</td>
</tr>
<tr>
<td>65°F (18°C)</td>
<td>13,000 ohms</td>
</tr>
<tr>
<td>75°F (24°C)</td>
<td>10,000 ohms</td>
</tr>
<tr>
<td>85°F (29°C)</td>
<td>8,000 ohms</td>
</tr>
</tbody>
</table>
**Table 4 - Cable and Sensor Resistance Log**

<table>
<thead>
<tr>
<th></th>
<th>Cable 1</th>
<th>Cable 2</th>
<th>Cable 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable serial number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factory cable resistance range</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**OUT OF THE BOX BEFORE INSTALLATION (OHMS)**

- Cable black to white (black to blue for 240VAC)
- Cable black to ground
- Cable white to ground (blue to ground for 240VAC)
- Sensor wire

**AFTER CABLE AND SENSOR ARE FASTENED TO FLOOR (OHMS)**

- Cable black to white (black to blue for 240VAC)
- Cable black to ground
- Cable white to ground (blue to ground for 240VAC)
- Sensor wire

**AFTER FLOOR COVERINGS ARE INSTALLED (OHMS)**

- Cable black to white (black to blue for 240VAC)
- Cable black to ground
- Cable white to ground (blue to ground for 240VAC)
- Sensor wire

*Retain this log to retain the warranty! Do not discard!*

**INSTALLATION NOTES**
To prevent the risk of personal injury and/or death, make sure power is not applied to the product until it is fully installed and ready for final testing. All work must be done with power turned off to the circuit being worked on.

**STEP 2.1:**

**Circuit Breaker (Overcurrent Protection)**

Infloor Electric Cable must be protected against overload by a circuit breaker. GFCI type (ground fault circuit interrupter) or AFCI type (arc-fault circuit interrupter) breakers may be used if desired, but are not necessary when using Infloor controls with integral GFCI.

The rating of the breaker (see Table 5) is determined by the amp draw of the heating cables. Add the amp ratings of all cables to be connected to the Infloor control (see Table 2 or the Nameplate Label on the cable). If the total is less than 12 amps, use a 15 or 20 Amp breaker (preference is 15 A). If the total is between 12 and 15 amps, use a 20 Amp breaker. If the total is over 15 A, another circuit will be required with its own breaker and Infloor control.

It may be possible to tap into an existing circuit as long as there is adequate capacity for the cables(s) and any additional appliance, such as a hair dryer or vacuum cleaner. Avoid circuits which have lighting, motors, exhaust fans, or hot tub pumps due to possible interference.

**Table 5**

<table>
<thead>
<tr>
<th>VAC</th>
<th>total amps</th>
<th>(AWG)*</th>
<th>qty</th>
<th>type**</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>up to 12 amps</td>
<td>14</td>
<td>1</td>
<td>SP</td>
<td>15 or 20 A</td>
</tr>
<tr>
<td>120</td>
<td>up to 15 amps</td>
<td>12</td>
<td>1</td>
<td>SP</td>
<td>20 A</td>
</tr>
<tr>
<td>240</td>
<td>up to 12 amps</td>
<td>14</td>
<td>1</td>
<td>DP</td>
<td>15 or 20 A</td>
</tr>
<tr>
<td>240</td>
<td>up to 15 amps</td>
<td>12</td>
<td>1</td>
<td>DP</td>
<td>20 A</td>
</tr>
</tbody>
</table>

* Recommended only. Follow local codes for wire gauge size.
** SP= single-pole, DP=double-pole

**STEP 2.2:**

**Install Electrical Boxes**

*Infloor Thermostat:*
Install an extra-deep electrical box for the Infloor Thermostat. Follow the instructions included with the thermostat for complete information on location and wiring.

*Infloor Relay:*
Install an extra-deep electrical box for any Infloor Relay(s). The Infloor Relay is used when more than 15 amps must be controlled by one Infloor Thermostat. Follow the instructions included with the Infloor Relay for complete information on location and wiring.

*Junction Boxes:*
If a cable is to be located so its power lead is not long enough to reach the Infloor thermostat or Infloor Relay directly, a junction box must be installed. Do not attempt to make a connection to other wiring without a junction box. Use a standard junction box with a cover, mounting it below the subfloor, in the attic, in the wall, or in another location easily accessible after all coverings are complete. If the Infloor sensor wire is not long enough to reach the Infloor Thermostat directly, it may be extended. A junction box may be required by local code to make this connection. Follow the installation instructions included with the Infloor for details.

For construction with an existing wall or where the wall is covered, cut the necessary openings to mount the electrical boxes listed above. Wait to install the boxes until all wiring is fed into these locations to make it easier to pull the wire.
STEP 2.3: Bottom Plate Work
Drill or chisel holes at the bottom plate as indicated. One hole is for routing the power lead conduit and the other is for the thermostat sensor. These holes should be directly below the electrical box(es).

If going in to an existing wall, cut out dry wall and chisel out bottom plate to route wires to control.

STEP 2.4: Install Power Lead Conduit and Thermostat Sensor

**Power Lead Conduit:**
The shielded power lead can be installed with or without electrical conduit (recommended for added protection against nails or screws) depending on code requirements. Remove one of the knock-outs in the electrical box to route the power lead. If electrical conduit is not required by code, install a wire collar to secure the power leads where they enter the box. If conduit is required by code, install 1/2" (minimum) conduit from the bottom plate up to the electrical box. For multiple power leads (multiple cables) install 3/4" conduit.

**Infloor Thermostat Sensor:**
The Infloor thermostat sensor should be installed in a plastic sensor tube (P/N 29011) or electrical conduit. Sensor tube or conduit is recommended for added protection against nails or screws. Do not place the sensor in the same conduit as the power leads to avoid possible interference. Open a separate knock-out in the bottom of the thermostat box. Feed the sensor or conduit through the knock-out, down through the cut-out in the bottom plate, and out into the floor where the heating cable will be installed. Feed the thermostat sensor down the sensor tube.

STEP 2.5: Rough-in Wiring:
Install appropriate 12 or 14 AWG electrical wire from the circuit breaker or branch circuit source to the Infloor Thermostat electrical box (and Infloor Relay box(es) if needed) following all codes, see Table 5.

If Infloor Relay(s) are used, feed appropriate wire (see Infloor Relay installation manual for size and type) between the Infloor Relay(s) and the Infloor Thermostat. See Infloor Relay instructions for details of wire size and type.
Phase 3 - Cable Installation with HeatMatrix

STEP 3.1: Determine the area for HeatMatrix
HeatMatrix is installed in both unheated and heated areas to provide crack-isolation and waterproofing. Order a quantity that will cover the full square footage of the area to be tiled.

STEP 3.2: Substrate preparation
The substrate must be flat, clean, dry, structurally sound, adequately load bearing and free from material which may prevent bonding with the cement mortar.

STEP 3.3: Cut lengths of HeatMatrix to fit the installation area
Measure and cut HeatMatrix to the required length for each row. Mark the boundary edge on the subfloor to use as a guide for mortar application.

STEP 3.4: Secure HeatMatrix to the substrate with mortar
The type of mortar used to secure the membrane to the subfloor depends on the type of substrate. For most substrates, a premium modified thinset mortar is recommended. Apply the mortar for the first row using a 1/4" x 1/4" notched trowel. Place the cut length of HeatMatrix over the mortar. Position membrane, then readjust alignment if necessary by lifting one end, and pulling lightly. Do not leave gaps between sections of HeatMatrix and ensure the pattern is aligned. Work HeatMatrix in using a float or flat trowel. The entire surface of the fleece on the underside of the membrane should be securely bonded to the mortar. Observe the mortar open time while working. Trim out any rough drain openings or other obstructions if necessary. Repeat the application process for each row until the space to be tiled is completely covered.

STEP 3.5: Outline the heated area
Mark the areas where the Infloor Electric Cable cable will be installed. Infloor Electric Cable should not be installed:

- Within 3" of the wall perimeter, door jamb, tub or shower base
- Within 6" of toilet flanges
- Under cabinets or fixtures that have no clearance under them
- Within confined spaces like closets or pantries where the heat cannot disperse, particularly when objects are left on the floor.

Wire may be omitted from areas with no foot traffic. Refer to Appendix 1 for a table of recommended clearances.

There are 2 installation methods for securing Infloor Electric Cable:

- HeatMatrix offers an easy way to install Infloor Electric Cable while providing crack-isolation, vapor management and waterproofing for installations with tile or stone. To install, Infloor Electric Cable is simply pressed into the HeatMatrix channels at a selected spacing. With HeatMatrix, the space between rows can be easily adjusted to accommodate additional wire or provide more or less heat in defined areas.
- Wire Strap is used for installations where crack-isolation and waterproofing are not required, or in areas that need a lower profile. Wire Strap be covered with a smooth mortar finish for use under hardwood, laminate or resilient flooring. For Wire Strap installation instructions, refer to Phase 4.
STEP 3.6: Make sure the cable fits
Check the cable size to ensure it will fit inside the Heated Area at the selected wire spacing (see Table 2)

⚠️ WARNING
The heating cable CANNOT be cut to fit. It must be kept its original length and fully embedded in the mortar in the floor. Any modification or mis-use of the heating cable will void the warranty and cause potential shock or fire hazard.

STEP 3.7: Decide the cable layout
Decide which direction the cables will run on the floor for the easiest coverage. Refer to the sample layouts in this manual for assistance. Depending on the shape of the area, it may help to think of it in terms of several smaller areas.

If more than one heating cable is to be installed in the area, all Power Leads must come back to the control or to a junction box and then to the control. Ensure there is sufficient space to allow this when planning the wire layout.

⚠️ WARNING
NEVER run Power Leads across heating cables, under baseboard areas, or other potentially damaging areas.
NEVER place heating cables closer than 2" from other heating cables.
NEVER place heating cables closer than 1" from Power Leads.

STEP 3.8: Position the Power Leads & Factory Splice
Carefully cut the tie binding the power lead coil. Do not nick the braid covering the power lead. Locate the Factory Splice to ensure the power lead will reach the Infloor control electrical box or junction box location. It is acceptable to run the power leads several feet in the floor area embedded in mortar if needed.

Draw an outline around the Factory Splice and move it aside. Cut a shallow channel in the HeatMatrix to allow the Factory Splice to lay flat with the rest of the heating cable in the channel. Pull the Power Leads up into the wall or conduit. Add hot glue in the channel and set the Factory Splice and Power Lead in place.

⚠️ CAUTION
Completely embed the Factory Splice and heating cable in the floor mortar. Never bend the factory splice. Never allow any part of the Factory Splice or heating cable to enter a wall or cabinet or drop through the subfloor. Damage to the product will result.

STEP 3.9: Install Cable
Press the heating cable into the HeatMatrix channels at the determined spacing. A hand roller or grout float may be used to aid in installation.
Infloor Electric Cable spacing in HeatMatrix:
- Install Infloor Electric Cable with 3-shapes in-between each row for approx. 12.3 W/ft² heat output (standard spacing)
- Alternate between 3-shapes and 2 for a higher heat output of 14.8 W/ft²
- Alternate between 3-shapes and 4 for a lower heat output of 10.6 W/ft²

STEP 3.10
Bench seat
If covering a bench seat or step area (not in a shower area), place a single run of cable up the riser. Use a section of HeatMatrix to secure the cable to the seat at the desired spacing, then install a single run down the riser. Use an "s-shaped" curve to avoid sharp bends in the cable at corners and help the cable to lay flat. The cable MUST be fully embedded in mortar and have approved floor coverings. Use hot glue where necessary to secure the cable flat against the riser.

**NOTICE**
NEVER space the cables less than 2" apart at any point, and never less than 2.5" average. Never space more than 3.5" average.
Phase 4 - Cable Installation with Wire Strap

STEP 4.1:
Floor Cleaning

The floor must be completely swept of all debris including all nails, dirt, wood, and other construction debris. Make absolutely sure there are no objects on the floor which might damage the wire.

Wet mop the floor at least twice to ensure there is no dirt or dust. This will allow proper bonding of the mortar and proper stick of any adhesives or double-sided tape used later.

STEP 4.2:
Outline the Heated Area

Use a marker to outline the area where the heating cable will be installed. Refer to the Appendix for a table of recommended clearances.

Cabinet vanities: Draw the border right up to the toe-kick. The wire can be installed up to 1" away from the vanity toe-kick.

Tubs and shower entries: Draw the border about 3" from the edge of the tub or shower.

Walls: Draw the border about 3" from the wall. If required to help the cable fit better, it may be drawn 4" to 6" from the wall since people do not generally stand this close to a wall anyway. It may also be drawn closer, but be careful that the cable will not be placed under any trimwork.

⚠️ WARNING

• Keep the cable at least 6" from toilet flanges
• Do not run the cable under cabinets or fixtures that have no clearance under them.
• Avoid running the cable into a small closet or pantry. The heat cannot escape and things can be laid on the floor, blocking the heat and potentially overheating and causing a fire hazard.

STEP 4.3
Make Sure the Cable Fits

Check the cable size to ensure it will fit inside the Heated Area at the selected wire spacing. See Table 2.

⚠️ WARNING

Remember the heating cable length CANNOT be cut to fit. It must be kept its original length and fully embedded in the mortar in the floor. Any modification or mis-use of the heating cable will void the warranty and cause potential shock or fire hazard.

STEP 4.4
Decide the Layout

Decide which direction the cables will run on the floor for the easiest coverage. Refer to the sample layouts in this manual for assistance. Depending on the shape of the area, it may help to think of it in terms of several smaller areas.
Install Wire Strap

STEP 4.5
Measure the edge of the Heated Area where Wire Strap will be installed.

STEP 4.6
Cut the Wire Strap to length using metal shears.

STEP 4.7
Secure the strap to the floor. Depending on the floor type, different methods may be used.

Concrete, self-level, or similar: Double-sided tape (if included with your cable), hot glue, or strong spray adhesive may be used if the floor is well cleaned and the strap is wiped free of any oils. However, it is highly recommended to also place screws at each end of the strap, and every 4 to 5 feet, to ensure it does not come loose. If using a strong spray adhesive, apply to both the back of the strap and the floor where it will be placed, and carefully follow all spray manufacturer’s instructions and cautions.

OR

Plywood, cement board, or similar: Galvanized nails or screws may be used to secure the strap every 6" to 10".

OR

Cut another piece of strap for the other end of the area and secure to the floor.
Completely embed the Factory Splice and heating cable in the floor mortar. Never bend the factory splice. Never allow any part of the Factory Splice or heating cable to enter a wall or cabinet or drop through the subfloor. Damage to the product will result.

**Position the Power Leads & Factory Splice**

**STEP 4.8**
Carefully cut the tie binding the power lead coil. Do not nick the braid covering the power lead.
Locate the Factory Splice to ensure the power lead will reach the Infloor control electrical box or junction box location. It is acceptable to run the power leads several feet in the floor area embedded in mortar if needed.

**STEP 4.9**
Draw an outline around the Factory Splice and move it aside. Chisel a shallow channel to allow the Factory Splice to lay flat with the rest of the heating cable in the channel. Add hot glue in the channel and set the Factory Splice in place.

**Installing Cables on Wire Strap**

**STEP 4.10**
Weave the cable back and forth across the area at the desired spacing until the other side of the room has been reached. Once this area is completed, press down all the tabs.

**2.5” spacing = 14.4 W/ft²**

**3” spacing = 12 W/ft²**

**3.5” spacing = 10.3 W/ft²**

NEVER space the cables less than 2” apart at any point, and never less than 2.5” average. Never space more than 3.5” average.

**STEP 4.11**
If there are additional areas to cover with cable, cut the lengths of strap necessary, attach them to the floor, and begin weaving the cable into that area.
STEP 4.12
To secure long lengths of heating cable, place additional, short lengths of the strap at 3–4-ft. intervals. Spray the back of the strap with a high-tack adhesive, and slide the strap, upside down, under the cables. Turn the strap over when it is positioned and adhere to the floor. Press the tabs down over the cables. If a spray adhesive was not used, carefully secure these short lengths of strap to the floor without damaging the cable.

Install second cable
STEP 4.13
If a second cable is to be installed in the area, all power leads must come back to the control, or to a junction box and then to the control. NEVER run power leads across heating cables, under baseboard areas, or other potentially damaging areas. Never join two cables in series.

Other Installations
Because many different room shapes and floor obstructions may be encountered in any given installation, additional layouts are provided below to assist in determining the best way to complete installations in odd-shaped areas.

Corner shower or vanity using Wire Strap
STEP 4.14
For an angled area, such as a corner shower, lay Wire Strap at an angle and adjust tab spacing to keep the wire spacing consistent. Maintain a minimum of 3" distance between the shower curb and wire.

STEP 4.15
Fill in the section with cable. Make sure that the cables are spaced evenly and parallel to one another.

Door entryway using Wire Strap
STEP 4.16
For an entryway or other small area where warmth is required, cut small sections of strap to fit the ends of that area. Keep wire 3" away from the framing.

STEP 4.17
Fill in with cable, adjusting spacing as necessary to fill in as much of the area as possible.

Bench Seat
STEP 4.18
If covering a bench seat or step area (not in a shower area), place a single run of cable up the riser. Use Wire Strap to secure the cable to the seat area at the desired spacing, then install a single run down the riser. Use an "s-shaped" curve to avoid sharp bends in the cable at corners and help the cable to lay flat. Again, the cable on the riser and seat area MUST be fully embedded in mortar and have approved floor coverings. Use hot glue where necessary to secure the cable flat against the riser.
## Phase 5 - Shower Area Installation

**NOTICE**

This application into a shower area must be verified by the local inspector or the authority having jurisdiction (AHJ).

### STEP 5.1

Cables only with (-W) on the nameplate label may be installed into a floor or bench seat located in a shower area. It must never be installed into walls. In general, the cable should be completely embedded into mortar as close to the surface coverings as possible. The cable may be placed directly below the tile or stone coverings for the best performance by using hot glue to secure the cable to the substrate.

If HeatMatrix or Wire Straps are intended to be used instead, two methods may be used to help avoid obstructing the flow of water to the drain when grout sealants begin to degrade: (1) Place the HeatMatrix or Wire Strap below the waterproofing system used, or (2) place a 3\" wide strip of HeatMatrix or Wire Strap only around the perimeter of the shower floor and cover above this with HeatMatrix Joint Strip or similar waterproofing and use hot glue everywhere else to secure the cable.

See the Appendix for an example of this type installation.

---

### CAUTION

Do not secure HeatMatrix or Wire Strap with fasteners that may penetrate the waterproofing membrane.

---

It is recommended that a dedicated cable be installed in the shower area separate from the rest of the bath floor. In case there is ever a problem with the shower installation, this cable could be disconnected without loss of heat to the rest of the floor.

### STEP 5.2

Make sure the power lead factory splice (the connection between the power leads and the heating cable) is located outside the shower area and at least 1’ away from shower openings and other similar areas normally exposed to water. Make sure the control is located at least 4’ away from shower openings such that it cannot be exposed to water or touched by a person in the shower area.

### STEP 5.3

If the heating cable must enter the shower area over a curb, secure the cable at the edges in an "s-shaped" curve to ensure the cable is not bent sharply or pinched when surface coverings are installed. If the cable is installed below the waterproofing membrane, the curb surface may be notched 1" wide and 1/8" deep to help the cable lay flat, and coated with mortar before applying the waterproofing. Do not damage any waterproofing components, and do not run the heating cable through a non-masonry curb, causing it to overheat.

### STEP 5.4

Fill in the floor area with cable. Around the drain leave at least 2" spacing from the edge of the flange. Make sure cable is not placed where door hardware, handrails, or other items may mount to the floor.
STEP 5.5
If covering a bench seat in the shower with cable, secure it with hot glue or with HeatMatrix or Wire Strap located underneath waterproofing. Do not use fasteners that penetrate any waterproofing membrane or waterproofing system. Use hot glue to secure a single run of cable up the side of the bench riser. Fill in the seat area with cable. Then secure a single run of cable down the riser if needed. Use an "s-shaped" curve to avoid sharp bends in the cable at corners and help the cable to lay flat.

STEP 5.6
If the cable cannot exit the shower area, the end of the cable has a waterproof splice that may be located in the shower area, fully embedded into the mortar like the heating cable.

STEP 5.7
If any part of the heating cable entering a shower area is damaged during installation, do not attempt to repair it. A field repair or modification of the cable may result in serious shock hazard.

Phase 6 - Final Steps

STEP 6.1
After the cable installation is completed, inspect the work. Make sure cable spacings are correct and consistent, having no place where cables are less than 2" spacing, nor greater than 4" spacing in the heated areas, no cables cross over each other, all the cables are undamaged, and all areas to be heated are covered with cable.

STEP 6.2
Take resistance readings of the cable again to make sure it has not been damaged during the installation. This is very important to do. Record these readings in the Cable and Sensor Resistance Log (Table 4).

STEP 6.3
Lay cardboard, carpet, or similar material over the cables to protect them from damage until the floor covering is installed.
Phase 7 - Finish Wiring

STEP 7.1
Feed the power leads from the cable up through the hole drilled in the baseplate, or up into the conduit to the control electrical box (or junction box if one was used).

STEP 7.2
Below the control, or wherever the floor sensor tube is to be located, measure at least 1 ft. into the heated area. Mark the spot where the sensor tube will be attached to the floor. Be sure to locate the sensor tube exactly between two of the heating cables.

STEP 7.3
To make sure the sensor tube does not create a high spot in the floor, it may be necessary to chisel a channel into the floor and lay the sensor tube into the channel. Hot glue the tip into place.

STEP 7.4
Feed the sensor tube up to the control box. Finish by securing a steel nail plate over the power lead(s) and sensor tube to protect them against baseboard nails later.

When using HeatMatrix, the sensor wire is pressed into the channel between 2 wire rows. For 3-shape spacing, the sensor is placed at an angle with a small portion of the membrane cut out to allow the sensor to sit flush. For 4-shape spacing, the sensor is positioned in the channel exactly between 2 wires. Do not install the sensor between wire spaced 2-shapes apart.

STEP 7.5
If it was necessary to end a power lead at a junction box, feed 14- or 12-gauge electrical wire from this box to the control box.

Tip: If more than one cable was installed, label the ends of the power leads with a brief description as to which area they supply power. Use tape to label them “Cable 1,” “Cable 2,” “Kitchen,” “Bath,” or similar. This will make it easier to identify the leads later on. Take photos of the installation. This will provide a useful record for any future needs.
Phase 8 - Control Installation

STEP 8.1:
If it has not already been done, install an electrical box for the Infloor thermostat and Infloor Relay. See Step 2.2 for details.

STEP 8.2
Read and follow the instructions included with the Infloor thermostat and Infloor Relay for complete connection instructions, requirements, and mounting.

STEP 8.3
Make any final connections to the circuit breaker or branch circuit source.

⚠️ WARNING
Make sure 120 VAC is supplied to 120 VAC cables and 240 VAC is supplied to 240 VAC cables. Otherwise, dangerous overheating and possible fire hazard can result.

STEP 8.4
System Start Up
After all controls are installed, do not energize the system, except to briefly test operation of all components (no longer than 10 minutes). **Do not put the system into full operation until the tile or flooring installer verifies all cement materials are fully cured (typically two to four weeks).** See mortar manufacturer’s instructions for recommended curing time.

NOTICE
Refer to the installation sheets provided with the controls for proper setting. The system should now operate as designed. **Please leave this instruction manual, Infloor control instructions, and copies of photos of the installed heating system with the end user.**

NOTICE
Most laminate and wood floor manufacturers specify their flooring should not be subjected to temperatures over 82° to 84°F (27° to 28°C). Check with the flooring dealer or manufacturer and set the thermostat Floor Limit temperature appropriately.

Phase 9 - Floor Coverings / General Recommendations

NOTICE
Please note, this installation manual is not a structural or a floor covering installation manual and is intended only for general guidance as it applies to the Infloor Electric Cable product. It is recommended to consult with professional flooring installers to make sure proper materials are used and proper installation techniques are followed.

When installing tile or stone, the Tile Council of North America (TCNA) guidelines or ANSI specifications should be followed as a minimum standard.

A latex-modified thin-set cement-based mortar and grout is recommended instead of water-based multi-purpose materials when installing a radiant product.
NOTICE

Do not use solvent based adhesives or pre-mix mortars because they are not as heat resistant and do not conduct heat well.

- When installing over HeatMatrix, read and follow the instructions given with the HeatMatrix product. Apply the mortar by filling all voids in the HeatMatrix with the flat side of the trowel, then comb to ensure 100% coverage. Avoid lining up tile grout lines with joints between sections of HeatMatrix.

- Select the proper size trowel for the installation of tile or stone. We recommend a minimum \( \frac{3}{8} \text{"} \times \frac{1}{4} \text{"} \) trowel. This trowel works well for most ceramic tile. A thicker thin-set can be used if required. Select the thin-set thickness in accordance with the floor covering requirements.

- For additional information on tile installation, please contact TCNA at 864-646-8453 or visit their web site at www.tileusa.com, or contact NTCA at 601-939-2071 or see their web site at www.tile-assn.com.

- When installing floor coverings other than tile or stone, follow industry and/or manufacturer’s recommendations. Ensure the wire is first covered with a layer of self-leveling cement based mortar, letting it cure fully before applying any surface underlayment, floating wood or laminate flooring, carpet, etc.

- With 3" or 3.5" spacing, the combined R-values of all floor coverings over the wire should not exceed R-2.5. With 2.5" spacing, the combined R-value should not exceed R-1.5. Higher R-values will diminish performance and trap too much heat. Consult the floor covering manufacturer to verify compatibility with radiant electric heat.

- Make sure nails, screws, or other fasteners do not penetrate the floor in the heated area. The wire can easily be damaged by fasteners penetrating the floor.

- All floor coverings must be in direct contact with the cement-based mortar encasing the wire. Do not elevate the floor above the mortar mass.

- Do not install 2" x 4" wooden nailers (sleepers) on top of a slab for the purpose of attaching hardwood. Any air gap between the heating wire and the finished floor covering will drastically reduce the overall output of the heated floor.

- Care should be taken when laying area rugs, throw rugs, and other surface products on the floor. Most products are okay to use, but if in doubt, consult the product manufacturer for compatibility. Do not use rubber backed products.

- When placing furniture make sure an air clearance of at least 1½" is available. Furniture able to trap heat can damage the heating system, the flooring, and the furniture over time.

- After floor coverings have been installed, take resistance readings of the cable again to make sure it has not been inadvertently damaged. Record these readings in the Cable and Sensor Resistance Log (Table 4).

Phase 10 - Install Insulation

Insulate under the subfloor for better performance and efficiency of the system. Refer to the Appendix for diagrams and insulation recommendations.
Appendix 1: Minimum Clearances for Infloor Electric Cable

<table>
<thead>
<tr>
<th>Minimum Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathroom vanity or kitchen cabinet toe-kick 1&quot;</td>
</tr>
<tr>
<td>Showers or tub boundaries 3&quot;</td>
</tr>
<tr>
<td>Doorway framing 3&quot;</td>
</tr>
<tr>
<td>Walls 3&quot;</td>
</tr>
<tr>
<td>Toilet flange 6&quot;</td>
</tr>
<tr>
<td>Other heating wire 2&quot;</td>
</tr>
<tr>
<td>Heating cable power lead 1&quot;</td>
</tr>
<tr>
<td>Appliances (washer, dryer, oven) 1&quot;</td>
</tr>
<tr>
<td>Baseboard heaters or radiators 3&quot;</td>
</tr>
<tr>
<td>Below a built-in, cabinet, furniture 1 1/2&quot;</td>
</tr>
<tr>
<td>Drains 2&quot;</td>
</tr>
</tbody>
</table>

Do not install Infloor Electric Cable in closets, pantries or in other small enclosed spaces.

Appendix 2: Types of Construction and Applications

**Types of Construction**

**Tile or stone applications with HeatMatrix**
To install tile or stone over HeatMatrix and Infloor Electric Cable, refer to the manufacturers recommendations on mortar type, notch size and curing time. For areas exposed to surface water, the seam between rows of HeatMatrix should be sealed with HeatMatrix Joint Strip. This is done by troweling a strip of mortar over the seam, then pressing Joint Strip into the mortar. Ensure these sections are as flush with the adjacent surfaces as possible. Once set, the tile can be installed over these areas as usual.

**Laminate, resilient or hardwood over HeatMatrix**
When applying mortar over HeatMatrix in this application, the finish must be smooth instead of notched. Do not use nails or screws to attach any type of flooring to the finished mortar surface. A ‘floating’ floor installation is typically recommended for wood or laminate flooring due to expansion and contraction caused by changes in floor temperature. When selecting floor coverings, the R-value should not exceed R-2.5. when using 3" or 3.5" wire spacing and not exceed R-1.5 when using 2.5" spacing.
Mortar Applications with Wire Strap:
1. If a backer board or plywood sheeting is used to strengthen the floor, or if the heating wire will be placed directly onto the slab, install Infloor Electric Cable in the thin-set mortar bond coat above these materials.

2. If a thicker mortar bed, or self-leveling concrete, is used to strengthen the floor, the heating wire can be installed in either the mortar bed (dry-set) or in the mortar bond coat directly below the tile or stone.

The heating wire is generally installed above the self-leveling mortar in a thin-set bond coat. Use plastic lath instead of the typical metal lath when installing in a self-leveling layer.

Self-leveling mortar with Wire Strap:
Self-leveling mortar may be used in Wire Strap / Infloor Electric Cable installations when the finished surface needs to be smooth. This is applies to engineered wood, vinyl, laminate, or carpet floor coverings. Attach the Infloor Electric Cable to Wire Strap on the subfloor or slab, then pour self-leveling mortar 1/4” to 1/2” thick according to manufacturer’s specifications. Install floor covering after the mortar has fully cured.

Special Precautions
Isolation Membrane: Install the heating wire above the membrane, whenever possible, unless recommended otherwise by the membrane manufacturer.

Insulation: Insulation dramatically enhances the performance and efficiency of floor-warming systems. Do not install rigid insulation directly above or below backer board or mortar.

Mosaic Tile: When installing mosaic tile, it is recommended to apply a two-step process. First, embed the heating wire in a thin self-level mortar bed (1/4”–3/8”), then thin-set the mosaic tile according to typical practice.

Expansion Joints: Do not install heating wires through an expansion joint. Install heating wire right up to the joint, if necessary, but not through the joint.

⚠️ CAUTION ⚠️
Never bang a trowel on the Heating Wire to remove excess mortar from the trowel. This could damage the heating wire.

---

Double-plywood over frame floor
Cement backerboard over frame floor

- Latex-Portland cement mortar bond coat
- Heating cable
- Cement backerboard, thick-set, or self-leveling mortar bed
- Plywood subfloor
- Insulation (per International Residential Code, Chapter 11)
- Joist
- Tile/stone or laminate flooring

Thin-set over slab on grade

- Thin-set or self leveling mortar bed
- Heating cable
- Antifracture membrane or cork underlayment, as needed
- Concrete slab with rewire or rebar
- Insulation beneath slab (per International Residential Code, Chapter 11)
- Tile/stone or laminate flooring
Connecting Multiple Cables

**WARNING**

To prevent the risk of personal injury and/or death, do not perform any electrical work unless qualified to do so. Work should be done with great care and with power turned off to the circuit being worked on. Follow all local building and electrical codes.

---

**Infloor Thermostat / Relay Connections**

Load 1
Black

Line 1
Black

Line 2
White

Load 2
White

Infloor thermostat or Relay

Power Supply (120 VAC or 240 VAC)

Power Lead
From Infloor Electric Cable
Cable 1

Power Lead
From Infloor Electric Cable
Cable 2

Standard NM Cable (12 or 14 AWG)

Multiple cables can be connected to a single Infloor thermostat or Infloor Relay. Refer to Table 2 and Table 5 for details on calculating the maximum number of cables per control or relay.

---

**WARNING**

The Infloor control is not fully illustrated in these diagrams in order to simplify them. These diagrams are given only as examples of how to properly connect multiple cables. Care must be taken not to overfill a box. Be sure to use wire nuts that are the correct size for the connections being made. Follow all codes for wiring.

All electrical work must be done by a qualified licensed electrician in accordance with local building and electrical codes, and the National Electrical Code (NEC), especially Article 424 of the NEC, ANSI/NFPA70 and Section 62 of CEC Part 1.
Appendix: Sample Layouts

**Kitchen and Family Room** (normal heat loss, slab on grade with insulation)
Two zones, 240 volts: Three cables. 190 ft. of Wire Strap, or eight 25-ft. rolls.
**Kitchen and SunRoom** (normal and high heat loss, framed floor construction)

One zone, 240 volts: Two cables. 104 ft. of Wire Strap, or five 25-ft. rolls.
**Master Bathroom** (normal heat loss, framed floor construction)

One zone, 120 volts: One cable. 35 ft. of Wire Strap, or two 25-ft. rolls.

Install cables at least 6" away from toilet flange

1 spool 100 ft²
3" spacing

Wire Strap

Cable end

Control

Floor Sensor

counter open to floor

---

**Master Bathroom** (normal heat loss, framed floor construction)

One zone, 120 volts: One cable. 49 ft. of Wire Strap, or two 25-ft. rolls.

Install cables at least 6" away from toilet flange

1 spool 90 ft²
3" spacing

Wire Strap

Cable end

Control

Floor Sensor

counter open to floor

Bath Tub

Toilet

Closet

Vanity
**Basement Bathroom** (high heat loss, below grade basement slab)
One zone, 120 volts: One cable. 39 ft. of Wire Strap, or two 25-ft. rolls.
Master Bathroom (normal heat loss, framed floor construction)
Two zones, 120 volts: Two Cables

Example of Cables only with (-W) on the nameplate label, where cable is installed in a shower area and enters over the curb.

Install cables at least 6" away from toilet rings

Shower Details

- Shower Curb
- Infloor Electric Cable
- Thinset Mortar
- Avoid sharp bends in cable
- Factory Splice
Installing Infloor Electric Cable above the waterproof liner
Infloor Electric Cable can be installed above the waterproofing liner if the attachment method does not puncture the liner. A overlay of thinset is first applied over the liner. Wire Strap or 2-inch HeatMatrix strips are then attached to opposite sides of the shower using hot glue or double sided tape. Leave a 2 inch gap between the drain flange and Infloor Electric Cable. When using HeatMatrix, strips are covered with mortar and Joint Tape after the wire is in place. This reduces the chance of water becoming trapped in the low sections of the HeatMatrix membrane. Ensure Infloor Electric Cable is fully embedded within a cement based mortar before tiling.

Installing Infloor Electric Cable below the waterproof liner
Infloor Electric Cable can be installed on a sloped mortar bed below the waterproofing liner layer using Wire Strap or a 2-inch strip of HeatMatrix. Ensure the Infloor Electric Cable and Wire Strap or HeatMatrix are fully covered in mortar, and trowel to provide a smooth finished surface. Apply waterproof liner over the smoothed mortar surface according to the liner manufacturer's instructions. Ensure the coverings above the waterproof liner do not exceed R-0.5 to avoid capturing too much heat.

**NOTICE**
See phase 5 for complete details and Cautions. This application into a shower area must be verified by the local inspector or the authority having jurisdiction.
If not qualified to perform electrical installations, it is strongly recommended that a qualified, licensed electrician be hired to install the heating cables and related electrical components. If problems with the system arise, please consult the troubleshooting guide below.

**WARNING**

Any electrical troubleshooting work should be performed with the power removed from the circuit, unless otherwise noted.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cable resistance measurement is outside the range printed on the nameplate label.</strong></td>
<td>An analog ohmmeter (using a moving needle) was used to take the reading.</td>
<td>Obtain a digital ohmmeter able to read 0 to 20,000 ohms and remeasure the resistance.</td>
</tr>
<tr>
<td></td>
<td>If measurement shows an open or short circuit, the cable has been damaged.</td>
<td>Record resistances between all wires and contact the manufacturer.</td>
</tr>
<tr>
<td></td>
<td>If measurement is just a little low or high, room temperature has affected the resistance.</td>
<td>Make the room temperature 65°–75°F (18º-24ºC), or contact the manufacturer.</td>
</tr>
<tr>
<td></td>
<td>The resistance measurement could be from more than one cable wired in series, or wired in parallel. Either will provide false resistance readings.</td>
<td>Make sure resistance measurements are for only one cable at a time.</td>
</tr>
<tr>
<td></td>
<td>The multi-meter may be set to the wrong scale.</td>
<td>The ohmmeter should typically be set to the 200 (200Ω) scale. For heating wire with resistance range higher than 200 ohms on the nameplate label, set the meter to the 2000 ohm (2kΩ) scale.</td>
</tr>
<tr>
<td><strong>Floor does not get warm.</strong></td>
<td>Cable has been damaged.</td>
<td>Measure cable resistance. Check for both “open circuit” and “short circuit” as detailed earlier in this manual. If damaged, record resistances between all wires and contact the manufacturer.</td>
</tr>
<tr>
<td></td>
<td>GFCI has tripped, indicated by a light on the control or “GFCI TRIP”.</td>
<td>Check for loose wire connections. Reset the GFCI on the control or circuit breaker. If it trips again, check for a short circuit in the cable as detailed earlier in this manual. If cable is damaged, record resistances between all wires and contact the manufacturer. If cable is not damaged, replace the GFCI control. Also see “GFCI conflicts” below.</td>
</tr>
<tr>
<td></td>
<td>Incorrect voltage supplied, or mismatched electrical components used.</td>
<td>Measure “line” voltage, 120 VAC cables have black and white leads. 240 VAC cables have black and blue leads.</td>
</tr>
<tr>
<td></td>
<td>Uninsulated concrete slab floor.</td>
<td>Surface temperatures rise slowly on an uninsulated slab and heat is lost to the ground below. If, after 5 to 8 hours of heating, the floor is not warmer to the touch, check for cable damage (see “Cable has been damaged” above). Measure “load” voltage/amperage to cable.</td>
</tr>
<tr>
<td></td>
<td>Cables are wired in “series” or “daisy chained” (end-to-end).</td>
<td>Multiple cables must be connected in “parallel” (or black-to-black, white-to-white).</td>
</tr>
<tr>
<td>Problem</td>
<td>Possible Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>Floor heats continuously.</td>
<td>Incorrect wiring. The control was “bypassed” when it was wired to the power supply.</td>
<td>Make sure wiring connections are correct. Consult the wiring diagram on the back of the control, the instructions that came with the control, or the wiring diagrams in the Appendix.</td>
</tr>
<tr>
<td>Control is not working correctly.</td>
<td>Defective control.</td>
<td>Return control to dealer for replacement.</td>
</tr>
<tr>
<td>Control is not working correctly.</td>
<td>If a programmable control, the programming may be incorrect.</td>
<td>Carefully read and follow control programming instructions.</td>
</tr>
<tr>
<td>Control is not working correctly.</td>
<td>Incorrect voltage supplied, or mismatched components used.</td>
<td>Test voltage, verify parts. See “Incorrect voltage supplied” section</td>
</tr>
<tr>
<td>Control is not working correctly.</td>
<td>Floor sensor is not wired properly, or is not working properly.</td>
<td>Make sure only one floor sensor is connected to the control.</td>
</tr>
<tr>
<td>Control is not working correctly.</td>
<td>Loose connection(s) on line side and/or load side of control.</td>
<td>Remove and reinstall the wire nuts at each connection. Make sure the wire nuts are tight. Check all connections back to the breaker.</td>
</tr>
<tr>
<td>Control is not working at all.</td>
<td>No power is supplied.</td>
<td>Check circuit breaker. Measure voltage at the control. Check all connections between breaker and control.</td>
</tr>
<tr>
<td>Control is not working at all.</td>
<td>Floor sensor is not wired properly, or is not working properly.</td>
<td>Make sure only one floor sensor is connected to the control.</td>
</tr>
<tr>
<td>Control is not working at all.</td>
<td>Defective control.</td>
<td>Return control to dealer for replacement.</td>
</tr>
<tr>
<td>GFCI conflicts and false-trips.</td>
<td>An electric motor or a ballasted light source is sharing the circuit with the cable(s).</td>
<td>Electric motors and similar electrical devices can cause a GFCI to false-trip. Run a dedicated circuit to the floor-warming system or select a different branch circuit.</td>
</tr>
</tbody>
</table>

Although this troubleshooting guide is provided to assist with problems experienced with a floor-warming system, results are never guaranteed. The company does not assume any liability or responsibility for damage or injury that may occur from using this guide. If problems with the system persist, call the manufacturer.

WARNING: This product contains chemicals known to the State of California to cause cancer and birth defects or other reproductive harm. For more information: www.watts.com/prop65